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Abstract
A result of Zyczkowski and Sommers (2000 J. Phys. A: Math. Gen. 33
2045–57) gives the eigenvalue probability density function for the top N × N

sub-block of a Haar distributed matrix from U(N + n). In the case n � N ,
we rederive this result, starting from knowledge of the distribution of the
sub-blocks, introducing the Schur decomposition and integrating over all
variables except the eigenvalues. The integration is done by identifying a
recursive structure which reduces the dimension. This approach is inspired
by an analogous approach which has been recently applied to determine the
eigenvalue probability density function for random matrices A−1B, where A

and B are random matrices with entries standard complex normals. We relate
the eigenvalue distribution of the sub-blocks to a many-body quantum state,
and to the one-component plasma, on the pseudosphere.

PACS number: 05.45.+b
Mathematics Subject Classification: 15A52

1. Introduction

The plane, sphere and pseudosphere are special geometries in a number of related many-
body statistical systems. In particular, the lowest Landau level wavefunction for quantum
particles in a magnetic field, the equilibrium statistical mechanics of a one-component plasma
at a special value of the coupling and the eigenvalue probability density function for certain
random matrix ensembles all give rise to a special solvable state in these geometries. In
regard to the first of these, regarding the geometries as surfaces in appropriate 3-spaces, and
imposing a perpendicular magnetic field, the solvable state is the ground state wavefunction,
in that it can be written in an explicit factorized (Jastrow) form and the correlations can be
expressed explicitly as determinants [4, 5]. The absolute value squared of these wavefunctions
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has the interpretation as the Boltzmann factor for a one-component plasma, confined to the
corresponding surface, and interacting at the special value of the coupling � := q2/kBT = 2
[2, 15]. And the Boltzmann factors, after projecting onto the plane via an appropriate
stereographic projection in the case of the sphere and pseudosphere, allow for realizations
as the eigenvalue probability density function for three particular random matrix ensembles
[12, 16, 23]. The determinant form for the correlations in the quantum problem carries over
to the plasma and eigenvalue distributions, so these many-body systems are also solvable.
Although not to be addressed here, we also mention that these same geometries play a special
role in relation to the study of the zeros of random polynomials [9, 18].

It is the purpose of the present paper to contribute to the theory of the random matrix
ensemble relating to the pseudosphere, or more precisely to the Poincaré disk. Specifically,
our interest is in the eigenvalue distribution of the ensemble of the top N ×N sub-block of Haar
distributed matrices in U(N + n) (due to the invariance of Haar distributed unitary matrices
with respect to left and right multiplication by permutation matrices, in fact sub-blocks formed
by the entries of any N rows and N columns will have the same distributions as the top N × N

sub-block). This ensemble has shown itself in a number of recent works in random matrix
theory [8, 11, 17, 21]. We present a new derivation of a result due to Zyczkowski and Sommers
[23], giving that the eigenvalue probability density function is proportional to

N∏
l=1

(1 − |zl|2)n−1χ|zl |<1

∏
1�j<k�N

|zk − zj |2, (1.1)

(here χA = 1 if A is true, and χA = 0 otherwise). Our proof, although applying only to the
case when n � N , is arguably simpler than the original. Moreover, our derivation unifies the
case of the sphere and pseudosphere, by showing that a recently formulated approach to the
eigenvalue probability density function of the random matrix ensemble corresponding to the
sphere [13], can be adapted to the case of the pseudosphere.

2. The pseudosphere and plasma system

The pseudosphere refers to the two-dimensional hyperbolic space with the constant negative
Gaussian curvature κ = −1/a2 [1]. It is naturally embedded in the three-dimensional
Minkowski space with coordinates (y0, y1, y2) and line element

(ds)2 = −(dy0)
2 + (dy1)

2 + (dy2)
2. (2.1)

The pseudosphere is defined as the upper branch of the equation

−y2
0 + y2

1 + y2
2 = −a2

and can be parametrized by

y0 = a cosh τ, y1 = a sinh τ cos φ, y2 = a sinh τ sin φ.

In terms of this parametrization the line element (2.1) reads

(ds)2 = a2(dτ)2 + a2 sinh2 τ (dφ)2. (2.2)

Furthermore, the geodesic distance between (τ, φ) and (τ ′, φ′) is such that

cosh
s

a
= cosh τ cosh τ ′ − sinh τ sinh τ ′ cos(φ − φ′), (2.3)

while the volume element corresponding to the surface area is

dS = a2 sinh τ dτ dφ. (2.4)
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With z := x + iy, the pseudosphere is projected onto the Poincaré disk via the
stereographic projection

z = 2a tanh
τ

2
eiφ, |z| < 2a (2.5)

(equivalently (y0, y1, y2) �→ 2a(y1/y0, y2/y0)) and then

dS = dx dy

(1 − |z|2/4a2)2
. (2.6)

Note that with z expressed in polar form, (2.5) is equivalent to writing

r = 2a tanh
τ

2
, |z| < 2a.

In terms of the coordinates (τ, φ) the Laplacian � is computed from (2.2) as

� = 1

a2

(
1

sinh τ

∂

∂τ
sinh τ

∂

∂τ
+

1

sinh2 τ

∂2

∂φ2

)
.

Alternatively, in terms of the coordinates (r, φ) the Laplacian reads

� =
(

1 − r2

4a2

)2(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2

)
. (2.7)

From the Laplacian we can specify the Coulomb potential on the pseudosphere. In fact, two
potentials 	 and 	̃ will be defined. With sjk denoting the geodesic separation between particles
j and k, and �j the Laplacian with respect to particle j , the first is specified as the solution of
the Poisson equation

�j	(sjk) = −2πδ(sjk), (2.8)

subject to the boundary condition that 	(s) → 0 as s → ∞, and the second as the solution
of the Poisson equation

�j	̃(sjk) = −2πδ(sjk) − 1

2a2
. (2.9)

In both (2.8) and (2.9) δ(sjk) denotes the delta function relative to the volume form (2.4).
The Poisson equation (2.8) corresponds to the potential at (τj , φj ) due to a unit charge at
(τk, φk), while (2.9) corresponds to the potential at (τj , φj ) due to a unit charge at (τk, φk) and
a uniform smeared out charge of the same sign and density 1/4πa2. The solution of (2.8) is
readily verified to be

	(sjk) = −log tanh
sjk

2
= −log

∣∣∣∣ (zj − zk)/2a

1 − zj z̄k/4a2

∣∣∣∣, (2.10)

and that of (2.9) to be

	̃(sjk) = −log sinh
sjk

2
= −log

( |zj − zk|/2a

(1 − (rj /2a)2)1/2(1 − (rk/2a)2)1/2

)
. (2.11)

Choosing either (2.10) or (2.11), we want to form a one-component plasma system,
consisting of N mobile unit charges, and a smeared out uniform background charge density of
net charge −η. In the large N limit, we know from [15] that the bulk equilibrium statistical
mechanics is the same for both. However, our interest is in finite N, and to obtain an analogy
with a random matrix eigenvalue probability density function it is necessary to base the plasma
system on the potential (2.11). Since (2.11) corresponds to (2.9), to get a net background
charge density −η we must also cancel the smeared out positive charge implied by the constant

3



J. Phys. A: Math. Theor. 42 (2009) 385204 P J Forrester and M Krishnapur

term therein, and thus impose a smeared out charge density −η − N/4πa2. This will interact
with the particles to create a potential V (r), which must satisfy the Poisson equation

�V (r) = 2π(η + N/4πa2).

Choosing for convenience V (0) = 0 (the constant terms in the total potential are of no interest
to us), and using the form (2.8) of �, the solution of this equation is seen to be

V (r) = −(2πηa2 + N/2) log

(
1 − r2

4a2

)
. (2.12)

The total potential energy U, excluding constants, is obtained by summing the potential (2.11)
over all pairs, and adding to this

∑N
j=1 V (rj ). We thus have [15]

U = −
∑

1�j<k�N

log(|zk − zj |/2a) − (2πηa2 + 1/2)

N∑
j=1

log
(
1 − r2

j

/
4a2

)

implying that the Boltzmann factor is such that

e−βU dS1 · · · dSN ∝
N∏

l=1

(1 − |zl|2/4a2)(2πηa2+1/2)β−2
∏

1�j<k�N

|zk − zj |β dx1 dy1 · · · dxN dyN .

(2.13)

3. Magnetic analogy

It is remarked in [15] that with l := √
h̄c/eB the magnetic length

ψj(z) =
(

1 − |z|2
4a2

)(a/l)2

z̄j , j = 0, 1, . . . (3.1)

are, up to normalization, the lowest Landau level eigenstates for a quantum particle on the
pseudosphere, in the presence of a constant perpendicular magnetic field B, and projected onto
the Poincaré disk. Forming a Slater determinant out of the first N of these gives an N-body
state ψ such that |ψ |2 is proportional to (2.13) with

β = 2, 4πηa2 + 1 = 2(a/ l)2. (3.2)

We take this opportunity to give some details on how (3.1) comes about (see also [7]).
Let �r denote the unit vector perpendicular to the pseudosphere in Minkowski space. By

the formal analogy with the surface of a sphere with radius R and polar coordinates (θ, φ) as
specified by

a ↔ iR, τ ↔ iθ,

one sees that the vector potential

�A =
(

0, 0,
Ba

sinh τ
(1 − cosh τ)

)
(3.3)

is such that ∇ × �A = B �̂r and so corresponds to the sought perpendicular magnetic field.
Further, it follows similarly that the Hamiltonian

H := 1

2m

(
−ih̄∇ +

e

c
�A
)2

is such that

H = h̄2

2ma2

(
− 1

sinh τ

∂

∂τ

(
sinh τ

∂

∂τ

)
+

1

sinh2 τ

(
∂

∂φ
−

(
a

l

)2

(cosh θ − 1)2

)
(3.4)
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(of course in writing down (3.3) and (3.4) knowledge of the corresponding results for the
sphere is assumed [22]). The change of variables (2.5) so as to project to the Poincaré disk
gives that (3.4) reads

H = h̄2

2m

(
−4l2

(
1 − |z|2

4a2

)
∂2

∂z∂z̄
+

(
1 − |z|2

4a2

)(
z

∂

∂z
− z̄

∂

∂z̄

)
+

|z|2
4l2

)
. (3.5)

Following [5], with ωc := eB/mc, we note that the projected Hamiltonian (3.5) is of the
form

H = −h̄ωc

2

((
∂2	

∂z∂z̄

)−1(
∂

∂z̄
− ∂	

∂z̄

)(
∂

∂z
+

∂	

∂z

)
− 1

)
(3.6)

with

	 = −
(

a

l

)2

log

(
1 − |z|2

(2a)2

)
.

But (3.6) is such that

e	He−	 = −h̄ωc

2

((
∂2	

∂z∂z̄

)−1(
∂

∂z
− 2

∂	

∂z̄

)
∂

∂z
− 1

)

and so we are led to the result that any function of the form e−	f (z̄) with f analytic in z̄

belongs to the lowest Landau level (i.e. is an eigenfunction of H with the eigenvalue h̄ωc/2).
To further specify f , one notes that

J := z
∂

∂z
− z̄

∂

∂z̄

commutes with H as defined by (3.6) for general 	 = 	(|z|2), and seeks simultaneous
eigenfunctions of H and J. Such eigenfunctions are given by

e−	z̄j , j = 0, 1, . . .

and (3.1) follows.
Now if all the particles are fermions, the ground state ψ is formed out of a Slater

determinant of the single particles states,

ψ(z1, . . . , zN) = 1

C
det[ψj−1(zj )]j,k=1,...,N

= 1

C

N∏
l=1

(
1 − |zl|2

4a2

)(a/l)2 ∏
1�j<k�N

(z̄k − z̄j ), (3.7)

where C is an appropriate normalization, and the second equality follows upon use of the
Vandermonde determinant identity. The modulus squared is indeed identified with the case
(3.2) of (2.13).

4. Random matrix ensembles

4.1. The spherical ensemble

The eigenvalue probability density function for matrices Y = A−1B, with A and B random
N × N matrices consisting of independent complex Gaussian entries, turns out to be a one-
component plasma on the sphere. This spherical analog of (1.1) was proved in [17]. Below, we
give a simplified and unified approach that works for the sphere as well as the pseudosphere.

5
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We first sketch the proof for the sphere (more details may be found in the forthcoming book
[13]). The first step is to determine the distribution of Y.

Proposition 1. The distribution of Y is proportional to

1

det(IN + YY †)2N
. (4.1)

Proof. With X a complex matrix and (dX) denoting the wedge product of the differentials of
the real and imaginary parts of its elements, by noting

(dB) = | det A|2N(dY ) (4.2)

it follows that the joint density of A and Y is proportional to

| det A|2N e−Tr{A(IN +YY †)A†}.

The distribution of Y is obtained by integrating this over A. For this we change variables
C = A(IN + YY †)1/2 and by an appropriate analog of (4.2) and integration over C, we obtain
the density of Y to be∫ | det(C)|2N e−Tr(CC†)

det(IN + YY †)N
dC

det(IN + YY †)N
,

from which (4.1) results. �

The second and final step is to use knowledge of the distribution (4.1) to proceed to
compute the eigenvalue probability density function.

Proposition 2. [16] The eigenvalue probability density function for Y is proportional to
N∏

l=1

1

(1 + |zl|2)N+1

∏
1�j<k�N

|zk − zj |2. (4.3)

Proof. According to the Schur decomposition, Y can be written as

Y = UTNU−1, (4.4)

where U is a unitary matrix, and TN is an upper triangular matrix in which the diagonal entries,
denoted by {zj }j=1,...,N , are the eigenvalues of Y. Furthermore, we know that (see appendix 35
of [19] or section 6.3 of [13])

(dY ) =
∏

1�j<k�N

|zk − zj |2(U †dU) ∧N
j=1 dzj (dT̃N ), (4.5)

where T̃N denotes the strictly upper portion of TN. Noting from (4.4) that YY † = UTNT
†
NU †

shows that (4.1) is independent of U. The factorization of the U dependence in (4.5) then implies
that the eigenvalue distribution is obtained from (4.1) by integrating out the dependence of T̃N

and is thus proportional to
∏

1�j<k�N

|zk − zj |2 IN(z1, . . . , zN), IN(z1, . . . , zN) :=
∫

1

det
(
IN + TNT

†
N

)2N
(dT̃N ).

(4.6)

Following [13], we will compute the integral IN by deducing a recurrence for the integrals

In,p(z1, . . . , zn) :=
∫

1

det
(
In + TnT

†
n

)p (dT̃n), (4.7)

6
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where p � n (this ensures convergence). Analogous strategies can be found in [6, 10, 14].
For this purpose, let �u denote the last column of T̃n. We can then write

In + TnT
†
n =

[
In−1 + Tn−1T

†
n−1 + �u�u† zn�u

z̄n�u† 1 + |zn|2
]

, (4.8)

showing

det
(
In + TnT

†
n

) = (1 + |zn|2) det

(
In−1 + Tn−1T

†
n−1 +

�u�u†

1 + |zn|2
)

.

Noting that the final term in the determinant is a matrix of rank 1, this latter formula can be
further reduced to read

det
(
In + TnT

†
n

) = (1 + |zn|2) det
(
In−1 + Tn−1T

†
n−1

)(
1 +

1

1 + |zn|2 �u†(
In−1 + Tn−1T

†
n−1

)−1�u
)

.

(4.9)

Hence, by first writing

In,p(z1, . . . , zn) =
∫

(dT̃n−1)

∫
(d�u)

1

det
(
In + TnT

†
n

)p

we can substitute (4.9) to obtain

In,p(z1, . . . , zn) = 1

(1 + |zn|2)p
∫

(dT̃n−1)
1

det
(
In−1 + Tn−1T

†
n−1

)p

×
∫

(d�u)

(
1 +

1

1 + |zn|2 �u†(
In−1 + Tn−1T

†
n−1

)−1�u
)−p

. (4.10)

Making the change of variables

�v = (1 + |zn|2)−1/2
(
In−1 + Tn−1T

†
n−1

)−1/2�u
we see from this that

In,p(z1, . . . , zn) = Cn,p

(1 + |zn|2)p−n+1
In−1,p−1(z1, . . . , zn−1) (4.11)

where

Cn,p =
∫

(d�v)

(1 + �v†�v)p
. (4.12)

Iterating (4.11) with n = 2N , p = N shows

IN(z1, . . . , zN) ∝
N∏

l=1

1

(1 + |zl|2)N+1

and this substituted in (4.6) gives (4.3). �

We remark that the name spherical ensemble comes about because upon making the
stereographic projection from the plane to the sphere,

z = 2R tan
θ

2
eiφ

(cf (2.5)) transforms (4.3) to the form∏
1�j<k�N

|�rj − �rk|2

where �rj is the vector in R
3 corresponding to the point (R, θj , φj ) on the sphere.

7
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4.2. Truncated unitary matrices—the pseudosphere ensemble

Working now with truncated unitary matrices, we would like to repeat the steps which lead to
establishing the eigenvalue probability density function (4.3). The first task then is to specify
the distribution of the top N × N sub-block of Haar distributed matrices from U(N + n). Our
working requires that n � N .

Proposition 3. [3] Let the top N × N sub-matrices in question be denoted by QN. The
probability density of QN is proportional to

det
(
IN − QNQ

†
N

)n−N
, (4.13)

supported on QNQ
†
N < 1 (i.e. matrices QN with all singular values less than 1).

Proof. Following [8], we give a variation of the proof given in [3]. The proof relies on a
standard result in random matrix theory giving a construction of a particular Jacobi ensemble
in terms of Wishart matrices [7, 20]. With c and d being independent N×N and n×N complex
Gaussian random matrices, respectively (all elements i.i.d. standard complex normals), let
C = c†c, D = d†d. We require the fact that for n � N the probability density of

J := (C + D)−1/2C(C + D)−1/2 (4.14)

is proportional to

det(IN − J )n−N, (4.15)

supported on J < 1.
Let U denote an (N + n) × (N + n) Haar distributed unitary matrix. Let W denote the

N ×(N +n) sub-matrix formed from the first N rows, and W̃ denote the n×(N +n) sub-matrix
formed from the final n rows, so U has the block decomposition

U =
[
W

W̃

]
.

Further, let X be an (N + n) × N Gaussian matrix of independent standard complex normals.
From the facts that WX is then also distributed as an N × N Gaussian matrix of standard
complex normals, and W̃X as an n × N Gaussian matrix of standard complex normals, and
that WX, W̃X are independent, we can take c = WX and d = W̃X in (4.14) to conclude
from the above result that

J = (X†X)−1/2X†W †WX(X†X)−1/2 (4.16)

has probability density (4.15).
Introduce the singular value decomposition by writing

X = U1�U2

for U1 an (N +n)× (N +n) unitary matrix, U2 an N ×N unitary matrix, and � an (N +n)×N

matrix with diagonal entries (that is entries (i, i), for i � N ) equal to the positive square root
of the eigenvalues of X†X. We then have

X(X†X)−1/2 = [U1]N+n,NU2

where the notation [Z]p,q denotes the top p × q sub-block of Z. Using this in (4.16) shows

J = U
†
2

[
U

†
1

]
N,N+n

W †W [U1]N+n,NU2.

But the distribution of J is unchanged under conjugation by unitary matrices, and in particular
U2. Applying this conjugation, we see that

J has the same distribution as
[
U

†
1

]
N,N+n

W †W [U1]N+n,N . (4.17)

8
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Since U1 and U are independent, and U has the Haar distribution, UU1 has the same distribution
as U and hence, W has the same distribution as [WU1,1 WU1,2], where we have written
U1,1 = [U ]N+n,N and U1,2 denotes the last n columns of U. From this, it immediately follows
that [W †W ]N,N has the same distribution as

[
U

†
1

]
N,N+n

W †W [U1]N+n,N . Together with (4.17),

we conclude that [W †W ]N,N has the same distribution as J.
This tells us that the probability density of Q

†
NQN is proportional to (4.13). The

probability density of QN itself, being the top N × N block of U, U ∈ U(N + n), must
be invariant under conjugation by S ∈ U(N) and under complex conjugation, and so be a
function of (the trace of) Q

†
NQN . But in general for a p × q (p � q) complex matrix Y

with the probability density f of the form f = f
(
Q

†
NQN

)
, the probability density for Y †Y

is proportional to (det Y †Y )p−qf (Y †Y ). Here p = q = N , so we conclude that (4.13) also
holds for the probability density of QN.

�

Knowing that QN is distributed according to (4.13), the task now is to introduce the Schur
decomposition of QN, and integrate out all variables but the eigenvalues. This can be done
using the same recursive reduction of the dimension of the integral as used in the proof of
proposition 2, and the sought probability density function thus obtained.

Proposition 4. Let n � N . Then, the eigenvalue probability density function of QN is
proportional to (1.1).

Proof. Because QN is a sub-block of a unitary matrix, all eigenvalues have modulus less than
1. Introducing the Schur decomposition (4.4) of QN in (4.13), and recalling the change of
variables formula (4.5), we see that the eigenvalue probability density function is proportional
to ∏
1�j<k�N

|zk − zj |2 JN(z1, . . . , zN), JN(z1, . . . , zN) :=
∫

det
(
IN − TNT

†
N

)n−N
(dT̃N ),

(4.18)

where again T̃N denotes the strictly upper triangular portion of TN.
To compute JN by recurrence we introduce, for p � 0,

Jm,p(z1, . . . , zm) :=
∫

det
(
Im − TmT †

m

)p
(dT̃m) (4.19)

(cf (4.7)). Analogous to (4.8), with �u denoting the last column of T̃N , we can write

Im − TmT †
m =

[
Im−1 − Tm−1T

†
m−1 − �u�u† −zm�u

−z̄m�u† 1 − |zm|2
]

.

Working now as in deriving (4.9) from (4.8) shows

det
(
Im − TmT †

m

) = (1 − |zm|2) det
(
Im−1 − Tm−1T

†
m−1

)

×
(

1 − 1

1 − |zm|2 �u†(
Im−1 − Tm−1T

†
m−1

)−1�u
)

. (4.20)

Substituting (4.20) in (4.19) and proceeding now as in the derivation of (4.11) from (4.10)
shows

Jm,p(z1, . . . , zm) = Cm,p(1 − |zm|2)m+p−1Jm−1,p+1(z1, . . . , zm−1)

where Cm,p is again given by (4.12). Iterating this equation m times, we get

Jm,p(z1, . . . , zm) = Cm,p

m∏
k=1

(1 − |zk|2)m+p−1. (4.21)
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Applying (4.21) with m = N , p = n − N shows

JN(z1, . . . , zN) ∝
N∏

l=1

(1 − |zl|2)n−1

and this substituted in (4.18) gives (1.1). �
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